Iterative Image Reconstruction for Sparse-View CT Using Normal-Dose Image Induced Total Variation Prior
نویسندگان
چکیده
X-ray computed tomography (CT) iterative image reconstruction from sparse-view projection data has been an important research topic for radiation reduction in clinic. In this paper, to relieve the requirement of misalignment reduction operation of the prior image constrained compressed sensing (PICCS) approach introduced by Chen et al, we present an iterative image reconstruction approach for sparse-view CT using a normal-dose image induced total variation (ndiTV) prior. The associative objective function of the present approach is constructed under the penalized weighed least-square (PWLS) criteria, which contains two terms, i.e., the weighted least-square (WLS) fidelity and the ndiTV prior, and is referred to as "PWLS-ndiTV". Specifically, the WLS fidelity term is built based on an accurate relationship between the variance and mean of projection data in the presence of electronic background noise. The ndiTV prior term is designed to reduce the influence of the misalignment between the desired- and prior- image by using a normal-dose image induced non-local means (ndiNLM) filter. Subsequently, a modified steepest descent algorithm is adopted to minimize the associative objective function. Experimental results on two different digital phantoms and an anthropomorphic torso phantom show that the present PWLS-ndiTV approach for sparse-view CT image reconstruction can achieve noticeable gains over the existing similar approaches in terms of noise reduction, resolution-noise tradeoff, and low-contrast object detection.
منابع مشابه
NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT
Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT). Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction t...
متن کاملSparse CT reconstruction based on multi-direction anisotropic total variation (MDATV)
BACKGROUND The sparse CT (Computed Tomography), inspired by compressed sensing, means to introduce a prior information of image sparsity into CT reconstruction to reduce the input projections so as to reduce the potential threat of incremental X-ray dose to patients' health. Recently, many remarkable works were concentrated on the sparse CT reconstruction from sparse (limited-angle or few-view ...
متن کاملCT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization
Radiation dose reduction without losing CT image quality has been an increasing concern. Reducing the number of X-ray projections to reconstruct CT images, which is also called sparse-projection reconstruction, can potentially avoid excessive dose delivered to patients in CT examination. To overcome the disadvantages of total variation (TV) minimization method, in this work we introduce a novel...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملDeep-neural-network based sinogram synthesis for sparse-view CT image reconstruction
Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013